Pseudo Algebraically Closed Extensions
نویسنده
چکیده
منابع مشابه
On Pseudo Algebraically Closed Extensions of Fields
The notion of ‘Pseudo Algebraically Closed (PAC) extensions’ is a generalization of the classical notion of PAC fields. In this work we develop a basic machinery to study PAC extensions. This machinery is based on a generalization of embedding problems to field extensions. The main goal is to prove that the Galois closure of any proper separable algebraic PAC extension is its separable closure....
متن کاملProjective Pairs of Profinite Groups
We generalize the notion of a projective profinite group to a projective pair of a profinite group and a closed subgroup. We establish the connection with Pseudo Algebraically Closed (PAC) extensions of PAC fields: Let M be an algebraic extension of a PAC field K. Then M/K is PAC if and only if the corresponding pair of absolute Galois groups (Gal(M),Gal(K)) is projective. Moreover any projecti...
متن کاملOn PAC and bounded substructures of a stable structure
We introduce and study the notions of a PAC substructure of a stable structure, and a bounded substructure of an arbitrary substructure, generalizing [8]. We give precise definitions and equivalences, saying what it means for properties such as PAC to be first order, study some examples (such as differentially closed fields) in detail, relate the material to generic automorphisms, and generaliz...
متن کاملQuantifier Elimination following Muchnik
This paper describes a very simple (high school level) algorithm of quantifier elimination for real closed fields and algebraically closed fields following an idea of A. Muchnik. The algorithm essentially relies on intermediate value property, pseudo-euclidean division and sign change table for univariate polynomials over R. Surprisingly this algorithm exhibits some more general feature and it ...
متن کاملNoetherian algebras over algebraically closed fields
Let k be an uncountable algebraically closed field and let A be a countably generated left Noetherian k-algebra. Then we show that A⊗k K is left Noetherian for any field extension K of k. We conclude that all subfields of the quotient division algebra of a countably generated left Noetherian domain over k are finitely generated extensions of k. We give examples which show that A⊗k K need not re...
متن کامل